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INTRODUCTION 

VECTOR ALGEBRA 

Vector Algebra is a part of algebra that deals with the theory of vectors and vector spaces. 

Most of the physical quantities are either scalar or vector quantities. 

 

SCALAR QUANTITY: 

Scalar is a number that defines magnitude. Hence a scalar quantity is defined as a 

quantity that has magnitude only. A scalar quantity does not point to any direction i.e. a 

scalar quantity has no directional component. 

For example when we say, the temperature of the room is 30o C, we don‘t specify the direction. 

Hence examples of scalar quantities are mass, temperature, volume, speed etc. 

A scalar quantity is represented simply by a letter – A, B, T, V, S. 

 
VECTOR QUANTITY: 

 
A Vector has both a magnitude and a direction. Hence a vector quantity is a 

quantity that has both magnitude and direction. 

Examples of vector quantities are force, displacement, velocity, etc. 

A vector quantity is represented by a letter with an arrow over it or a bold letter. 

 

UNIT VECTORS: 

 

When a simple vector is divided by its own magnitude, a new vector is created known as 

the unit vector. A unit vector has a magnitude of one. Hence the name - unit vector. 

A unit vector is always used to describe the direction of respective vector. 

 

 

 
Hence any vector can be written as the product of its magnitude and its unit vector. Unit Vectors 

along the co-ordinate directions are referred to as the base vectors. For  example unit  vectors  

along X, Y and Z directions are ax, ay and az respectively. 

Position Vector / Radius Vector (  𝑂  𝑃    ): 

 
A Position Vector / Radius vector define the position of a point(P) in space relative to 

the origin(O).Hence Position vector is another way to denote a point in space. 

 𝑂  𝑃  = 𝑥𝑎 𝑥 + 𝑦𝑎 𝑦 + 𝑧𝑎 𝑧  



Displacement Vector 

 
Displacement Vector is the displacement or the shortest distance from one point to another. 

 

Vector Multiplication 

 

When two vectors are multiplied the result is either a scalar  or  a vector depending  on how 

they are multiplied. The two important types of vector multiplication are: 

 

 Dot Product/Scalar Product (A.B) 

 Cross product (A x B) 

 

1. DOT PRODUCT (A. B): 

 

Dot product of two vectors A and B is defined as: 

𝐴 . 𝐵   = │𝐴 ││𝐵 │ cos 𝜃𝐴𝐵 
 

Where 𝜃𝐴𝐵 is the angle formed between A and B. 

Also 𝜃𝐴𝐵 ranges from 0 to π i.e. 0 ≤ 𝜃𝐴𝐵 ≤ π 

The result of A.B is a scalar, hence dot product is also known as Scalar Product. 

 
Properties of Dot Product: 

 

1. If A = (Ax, Ay, Az) and B = (Bx, By, Bz) then 

𝐴 . 𝐵 = AxBx + AyBy + AzBz 

2. 𝐴 . 𝐵 = |A| |B|, if cos𝜃𝐴𝐵=1 which means θAB  = 00
 

 

This shows that A and B are in the same direction or we can also say that A and B are 

parallel to each other. 

3. 𝐴 . 𝐵  = - |A| |B|, if cos 𝜃𝐴𝐵=-1 which means 𝜃𝐴𝐵 = 1800. 

This shows that A and B are in the opposite direction or we can also say that A and B are 

antiparallel to each other. 

45.. 𝐴 . 𝐵   = 0, if cos 𝜃𝐴𝐵=0 which means 𝜃𝐴𝐵  = 900. 

This shows that A and B are orthogonal or perpendicular to each other. 

 

5. Since we know the Cartesian base vectors are mutually perpendicular to each other, we have 

𝑎 𝑥 . 𝑎 𝑥  = 𝑎 𝑦. 𝑎 𝑦  = 𝑎 𝑧 . 𝑎   = 1 
 

𝑎 𝑥 . 𝑎 𝑦  = 𝑎 𝑦. 𝑎 𝑧  = 𝑎 𝑧 . 𝑎   = 0 



 

2. Cross Product (A X B): 

 

Cross Product of two vectors A and B is given as: 

 

𝐴 𝑋𝐵   = │𝐴 ││𝐵 │ sin 𝜃𝐴𝐵 𝑎 𝑁 
 
Where 𝜃𝐴𝐵is the angle formed between A and B and 𝑎   is a unit vector normal to both A and B. Also θ ranges 

from 0 to π i.e. 0 ≤ 𝜃𝐴𝐵≤ π 

The cross product is an operation between two vectors and the output is also a vector. 

 
Properties of Cross Product: 

 
1. If A = (Ax, Ay, Az) and B = (Bx, By, Bz) then, 

 

 

 

 
 

 

The resultant vector is always normal to both the vectors  A and B.  

2.  𝐴 𝑋𝐵   = 0, if sin 𝜃𝐴𝐵  = 0 which means 𝜃𝐴𝐵  = 00   or 1800; 

This shows that A and B are either parallel or antiparallel to each other. 

3.   𝐴 𝑋𝐵   =│𝐴 ││𝐵 │𝑎   𝑁, if sin 𝜃𝐴𝐵  = 0 which means 𝜃𝐴𝐵  = 900. 

This shows that A and B are orthogonal or perpendicular to each other. 

Since we know the Cartesian base vectors are mutually perpendicular to each other, we have 

𝑎  𝑥     𝑥  = 𝑎  𝑦 𝑋 𝑎  𝑦  = 𝑎  𝑧𝑋𝑎  𝑧  = 0 

  𝑎  𝑥𝑋 𝑎  𝑦  = 𝑎  𝑧  , 𝑎  𝑦 𝑋 𝑎  𝑧  =  𝑎  𝑥 ,   𝑎  𝑧𝑋  𝑎  𝑥  = 𝑎  𝑦 

Coordinate transformations: 
The table below gives a summary of transformations from one system to another. 



 

 
 
 

 

 

CO-ORDINATE SYSTEMS 

 

Co-Ordinate system is a system of representing points in a space of given dimensions by 

coordinates, such as the Cartesian coordinate system or the system of celestial longitude and 

latitude. 

In order to describe the spatial variations of the quantities, appropriate coordinate system is 

required. A point or vector can be represented in a curvilinear coordinate system that may be 

orthogonal or non-orthogonal. An orthogonal system is one in which the coordinates are mutually 

perpendicular to each other. 

 

The different co-ordinate system available are: 

 Cartesian or Rectangular co-ordinate system.(Example: Cube, Cuboid) 

 Circular Cylindrical co-ordinate system.(Example : Cylinder) 

 

 Spherical co-ordinate system. (Example: Sphere) 



The choice depends on the geometry of the application. 

A set of 3 scalar values that define position and a set of unit vectors that define direction form 

a co-ordinate system. The 3 scalar values used to define position are called co-ordinates. All 

coordinates are defined with respect to an arbitrary point called the origin. 

 
1. Cartesian Co-ordinate System / Rectangular Co-ordinate System (x,y,z) 

 

 

 

A Vector in Cartesian system is represented as (Ax, Ay, Az) Or 

𝐴  = 𝐴𝑥  𝑎 𝑥 + 𝐴𝑦  𝑎 𝑦 + 𝐴𝑧  𝑎 𝑧 

Where𝑎 𝑥, 𝑦   and 𝑎 𝑧are the unit vectors in x, y, z direction respectively. 

Range of the variables: 

 

It defines the minimum and the maximum value that x, y and z can have in Cartesian system. 

-∞ ≤ x,y,z ≤ ∞ 

Differential Displacement / Differential Length (dl): 

It is given as 
 

𝑑 𝑙 = 𝑑𝑥𝑎 𝑥 + 𝑑𝑦𝑎 𝑦 + 𝑑𝑧𝑎 𝑧 

Differential length for a line parallel to x, y and z axis are respectively given as: 

dl = 𝑑𝑥𝑎 𝑥---( For a line parallel to x-axis). 

dl = 𝑑𝑦𝑎 𝑦 ---( For a line Parallel to y-axis). 

dl = 𝑑𝑧𝑎 𝑧 ---( For a line parallel to z-axis). 

If there is a wire of length L in z-axis, then the differential length is given as dl = dz az. Similarly 

if the wire is in y-axis then the differential length is given as dl = dy ay. 

Differential Normal Surface (ds): 
 

Differential surface is basically a cross product between two parameters of the surface. 

The differential surface (area element) is defined as 
 𝑑 𝑠  = 𝑑𝑠𝑎 𝑁 

Where𝑎 , is the unit vector perpendicular to the surface. 



 𝑑 𝑠  = 𝑑𝑦𝑑𝑧𝑎 𝑥 

 𝑑 𝑠  = 𝑑𝑥𝑑𝑧𝑎 𝑦 

 

For the 1st figure, 
 

 

2nd figure, 
 

 

3rd figure, 

 
 

Differential Volume: 

 
 𝑑 𝑠  = 𝑑𝑥𝑑𝑦𝑎 𝑧 

 

The differential volume element (dv) can be expressed in terms of the triple product. 

𝑑𝑣  = 𝑑𝑥𝑑𝑦𝑑𝑧 
 
 
 
 

 
 



 

 

2. Circular Cylindrical Co-ordinate System 

 
A Vector in Cylindrical system is represented as (Ar, AǾ, Az) or 

𝐴  = 𝐴𝑟𝑎 𝑟 + 𝐴∅𝑎 ∅ + 𝐴𝑧𝑎 𝑧 
 

Where𝑎 𝑟 , 𝑎 ∅ and 𝑎 𝑧 are the unit vectors in r, Φ  and z directions  

respectively. The physical significance of each parameter of cylindrical 

coordinates: 

1. The value r indicates the distance of the point from the z-axis. It is the radius of the 

cylinder. 

2. The value Φ, also called the azimuthal angle, indicates the rotation angle around the 

z- axis. It is basically measured from the x axis in the x-y plane. It is measured anti  

clockwise. 

3. The value z indicates the distance of the point from z-axis. It is the same as in  the 

Cartesian system. In short, it is the height of the cylinder. 

 

Range of the variables: 

It defines the minimum and the maximum values of r, Φ 

and z.  

0 ≤ r ≤ ∞ 

0 ≤ Φ ≤ 2π 
-∞ ≤ z ≤ ∞ 

 
Figure shows Point P and Unit vectors in Cylindrical Co-ordinate System. 

 

 
Differential Displacement / Differential Length (dl): 

 

It is given as 



 

𝑑 𝑙 = 𝑑𝑟𝑎 𝑟 + 𝑟𝑑𝜑𝑎 𝜑 + 𝑑𝑧𝑎 𝑧 

Differential length for a line parallel to r, Φ and z axis are respectively given as: dl = 

𝑑𝑟𝑎 𝑟---( For a line parallel to r-direction). 

dl = 𝑟𝑑𝜑𝑎 𝜑 ---( For a line Parallel to Φ-direction). dl = 

𝑑𝑧𝑎 𝑧 ---( For a line parallel to z-axis). 

 
Differential Normal Surface (ds): 
 

Differential surface is basically a cross product between two parameters of the surface. The 

differential surface (area element) is defined as 
 𝑑 𝑠  = 𝑑𝑠𝑎 𝑁 

Where𝑎 , is the unit vector perpendicular to the surface. 

 
This surface describes a circular disc. Always remember- To define a circular disk we  need 

two parameter one distance measure and one angular measure. An angular parameter will 

always give a curved line or an arc. 

In this case dΦ is measured in terms of change in arc. 

𝑑  𝑠  = 𝑟𝑑𝑟𝑑𝜑𝑎  𝑧 
 𝑑   𝑠  = 𝑑𝑟𝑑𝑧𝑎  𝜑 
  𝑑     𝑠   = 𝑟𝑑𝑟𝑑𝜑𝑎  𝑟 

Arc is given as: Arc= radius * angle 

Differential Volume: 

The differential volume element (dv) can be expressed in terms of the triple product. 

𝑑𝑣  = 𝑟𝑑𝑟𝑑𝜑𝑑𝑧 

 

3. Spherical coordinate System: 

Spherical coordinates consist of one scalar value (r), with units of distance, while the other two 

scalarvalues (θ, Φ) have angular units (degrees or radians). 
 

A Vector in Spherical System is represented as (Ar ,AӨ, AΦ) or 

𝐴  = 𝐴𝑟𝑎 𝑟 + 𝐴𝜃𝑎 𝜃 + 𝐴𝜑𝑎 𝜑 

Where𝑎 𝑟 ,  𝜃   and 𝑎 𝜑 are the unit vectors in r, θ and Φ direction respectively. The 

physical significance of each parameter of spherical coordinates: 

1. The value r expresses the distance of the point from origin (i.e. similar to altitude). 

It is the radius of the sphere. 

2. The angle θ is the angle formed with the z- axis (i.e. similar to latitude). It is also called 

the co-latitude angle. It is measured clockwise. 

3. The angle Φ, also called the azimuthal angle, indicates the rotation angle around the z- axis (i.e. 

similar to longitude). It is basically measured from the x axis in the x-y plane. It is measured 

counter-clockwise. 



Range of the variables: 

 
It defines the minimum and the maximum value that r, θ and υ can have in spherical co-ordinate 

system. 

0 ≤ r ≤ ∞ 

    0 ≤ Φ ≤ 2π 
                0 ≤ θ ≤ π 

 

 
Differential length: 

It is given as 

𝑑  𝑙 = 𝑑𝑟𝑎 𝑟 + 𝑟𝑑𝜃𝑎 𝜃 + 𝑟 sin 𝜃 𝑑𝜑𝑎 𝜑 

 

Differential length for a line parallel to r, θ and Φ axis are respectively given as: dl = 𝑑𝑟𝑎 𝑟--(For a line 

parallel to r axis) 

dl = 𝑟𝑑𝜃𝑎 𝜃---( For a line parallel to θ direction) 

 

dl = 𝑟 sin 𝜃 𝑑𝜑𝑎 𝜑 --(For a line parallel to Φ direction) 

 

 

Differential Normal Surface (ds): 

 

Differential surface is basically a cross product between two parameters of the surface. The 

differential surface (area element) is defined as 

 𝑑  𝑠  = 𝑑𝑠𝑎 𝑁 

Where𝑎  , is the unit vector perpendicular to the surface. 

 𝑑  𝑠  = 𝑟𝑑𝑟𝑑𝜃𝑎 𝜑 

 𝑑  𝑠  = 𝑟2 sin 𝜃 𝑑𝜑𝑑𝜃𝑎 𝑟 

 𝑑  𝑠  = 𝑟 sin 𝜃 𝑑𝑟𝑑𝜑𝑎 𝜃 

 

Differential Volume: 

 

The differential volume element (dv) can be expressed in terms of the triple product. 

𝑑  = 𝑟2 sin 𝜃 𝑑𝑟𝑑𝜑𝑑𝜃 



Coordinate transformations: 
 

 

 



 
Electrostatics: 

Electrostatics is a branch of science that involves the study of various phenomena caused by electric 

charges that are slow-moving or even stationary. Electric charge is a  fundamental property of 

matter and charge exist in integral multiple of electronic charge. Electrostatics as the study of 

electric charges at rest. 

The two important laws of electrostatics are 

 Coulomb‘s Law. 

 Gauss‘s Law. 

 

Both these laws are used to find the electric field due to different charge configurations. 

 

Coulomb‘s law is applicable in finding electric field due to any charge configurations where as 

Gauss‘s law is applicable only when the charge distribution is symmetrical. 

 

Statement: 

Coulomb's Law states that the force between two point charges Q1and Q2 is directly proportional to 

the product of the charges and inversely proportional to the square of the distance between them. 

Point charge is a hypothetical charge located at a single point in space. It is an idealized model of a 

particle having an electric charge. 

Mathematically, 

 

 

Where k is the proportionality constant. And , is called the permittivity of free space In SI units, Q1 



and Q2 are expressed in Coulombs(C) and R is in meters. 

Force F is in Newton’s (N) 

(We are assuming the charges are in free space. If the charges are any other dielectric medium, we 

 

will use instead where is called the relative permittivity or the dielectric constant of the 

medium). 



 

Therefore (1) 

 

 

As shown in the Figure 1 let the position vectors of the point charges Q1and Q2 are given by and 

 

. Let represent the force on Q1 due to charge Q2. 

 

 

 

Fig 1: Coulomb's Law 

 

The charges are separated by a distance of . We define the unit vectors as 

 

 

and (2) 

 

 

can be defined as . 

 

Similarly the force on Q1 due to charge Q2 can be calculated and if represents this force then we 

can write 

Force Due to ‘N ‘no.of point charges: 

When we have a number of point charges, to determine the force on a particular charge due to all other 

charges, we apply principle of superposition. If we have N number of charges Q1,Q2,. QN 

located 

respectively at the points represented by the position vectors , ,. , the force experienced 

by a 

charge Q located at is given by, 



 

 

.................................(3) 

 

Electric Field intensity: 

The electric field intensity or the electric field strength at a point is defined as the force per unit 

charge. 

That is 

 

 

or, (4) 

 

The electric field intensity E at a point r (observation point) due a point charge Q located at (source 

point) is given by: 

 

 

..........................................(5) 

 

For a collection of N point charges Q1 ,Q2 ,.........QN  located at , ,. , the electric 

field intensity at 

point is obtained as 

 

 

 

........................................(6) 

 

The expression (6) can be modified suitably to compute the electric filed due to a continuous 

distribution of charges. 

In figure 2 we consider a continuous volume distribution of charge (t) in the region denoted as the 

source region. 

 

For an elementary charge , i.e. considering this charge as point charge, we can write the field 

expression as: 

 

 

.............(7) 



 

 
 

Fig 2: Continuous Volume Distribution of Charge 

 

When this expression is integrated over the source region, we get the electric field at the point P due to 

this distribution of charges. Thus the expression for the electric field at P can be written as: 

 

 

..........................................(8) 

 

Similar technique can be adopted when the charge distribution is in the form of a line charge density 

or a surface charge density. 

 

 

........................................(9) 

 

 

 

........................................(10) 

 

Electric flux density: 

As stated earlier electric field intensity or simply ‘Electric field' gives the strength of the field at a particular 

point. The electric field depends on the material media in which the field is being considered. The flux density 

vector is defined to be independent of the material media (as we'll see that it relates to the charge that is 

producing it).For a linear isotropic medium under consideration; the flux density vector is defined as: 

................................................(11) 

 

We define the electric flux as 

 

 

.....................................(12) 

Gauss's Law: 

Gauss's law is one of the fundamental laws of electromagnetism and it states that the total electric flux 

through a closed surface is equal to the total charge enclosed by the surface. 



 

 

 

Fig 3: Gauss's Law 

 

Let us consider a point charge Q located in an isotropic homogeneous medium of dielectric constant . 

The flux density at a distance r on a surface enclosing the charge is given by 

 

...............................................(13) 

 

If we consider an elementary area ds, the amount of flux passing through the elementary area is given 

by 

 

 

.....................................(14) 

 

 

But ,  is  the  elementary  solid  angle  subtended  by  the  area at the location of Q. Therefore we can 

write 

For a closed surface enclosing the charge, we can write 

 

Which can seen to be same as what we have stated in the definition of Gauss's Law. 

 

 

 
 



This equation is called the 1st Maxwell's equation of electrostatics. 

 

Application of Gauss's Law: 

 

Gauss's  law  is particularly useful in  computing or where the charge distribution has some 

 

symmetry. We shall illustrate the application of Gauss's Law with some examples. 

 

1. An infinite line charge 

 

As the first example of illustration of use of Gauss's law, let consider the problem of determination of 

the electric field produced by an infinite line charge of density LC/m. Let us consider a line charge 

positioned along the z-axis as shown in Fig. 4(a) (next slide). Since the line charge is assumed to 

be infinitely long, the electric field will be of the form as shown in Fig. 4(b) (next slide). 

If we consider a close cylindrical surface as shown in Fig. 2.4(a), using Gauss's theorm we can write, 

 

 

.....................................(15) 

 

Considering the fact that the unit normal vector to areas S1 and S3 are perpendicular to the electric 

field, the surface integrals for the top and bottom surfaces evaluates to zero. Hence we can write, 

 

   Fig 4: Infinite Line Charge 



                                   .....................................(16) 

 

2. Infinite Sheet of Charge 

 

As a second example of application of Gauss's theorem, we consider an infinite charged sheet 

covering 

 

the x-z plane as shown in figure 5.  Assuming a surface charge density of  for the infinite surface  

charge, if we consider  a cylindrical volume having sides  placed symmetrically as shown in figure 

5,  we can write: 

 

 

 

 

..............(17) 

 

 

 

Fig 5: Infinite Sheet of Charge 

 

 

It may be noted that the electric field strength is independent of distance. This is true for the infinite 

plane of charge; electric lines of force on either side of the charge will be perpendicular to the sheet 

and extend to infinity as parallel lines. As number of lines of force per unit area gives the strength of 

the field, the field becomes independent of distance. For a finite charge sheet, the field will be a 

function of distance. 



3. Uniformly Charged Sphere 

Let us consider a sphere of radius r0 having a uniform volume charge density of rv C/m3. To 

determine 

everywhere, inside and outside the sphere, we construct Gaussian surfaces of radius r < r0 and r > r0 

as shown in Fig. 6 (a) and Fig. 6(b). 

For the region ; the total enclosed charge will be 

 

.........................(18) 

 

 

Fig 6: Uniformly Charged Sphere 

 

By applying Gauss's theorem, 

 

 

 

 

 

Therefore 

 

 

 

............... (19) 

 

 

 

 

.............................................. (20) 

 

For the region ; the total enclosed charge will be 

 

 

........................................................... (21) 

 

By applying Gauss's theorem, 

 

 

....................................... (22) 



Electrostatic Potential: 

 

In the previous sections we have seen how the electric field intensity due to a charge or a charge 

distribution can be found using Coulomb's law or Gauss's law. Since a charge placed in the vicinity of 

another charge (or in other words in the field of other charge) experiences a force, the movement of 

the charge represents energy exchange. Electrostatic potential is related to the work done in carrying a 

charge from one point to the other in the presence of an electric field. Let us suppose that we wish to 

move a positive test charge    from a point P to another point Q as  shown in the Fig. 8.The force at     

any point along its path would cause the particle to accelerate and move it out of the region if 

unconstrained. Since we are dealing with an electrostatic case, a force equal to the negative of that 

acting on the charge  is to be  applied while  moves from  P to Q.  The  work  done  by this external 

agent in moving the charge by a distance is given by: 

............................. (23) 

 

Fig 8: Movement of Test Charge in Electric Field 

 

 

The negative sign accounts for the fact that work is done on the system by the external agent. 

 

 

..................................... (24) 

The potential difference between two points P and Q , VPQ, is defined as the work done per unit 

charge, i.e. 

 

............................... (25) 



It may be noted that in moving a charge from the initial point to the final point if the potential 

difference is positive, there is a gain in potential energy in the movement, external agent performs the 

work against the field. If the sign of the potential difference is negative, work is done by the field. 

We will see that the electrostatic system is conservative in that no net energy is exchanged if the test 

charge is moved about a closed path, i.e. returning to its initial position. Further, the potential 

difference between two points in an electrostatic field is a point function; it is independent of the path 

taken. The potential difference is measured in Joules/Coulomb which is referred to as Volts. 

Let us consider a point charge Q as shown in the Fig. 9. 

 

 

 

 

Fig 9: Electrostatic Potential calculation for a point charge 

 

 

Further consider the two points A and B as shown in the Fig. 9. Considering the movement of a unit 

positive test charge from B to A , we can write an expression for the potential difference as: 

 

 

...................(26) 

It is customary to choose the potential to be zero at infinity. Thus potential at any point ( rA = r) due to 

a point charge Q can be written as the amount of work done in bringing a unit positive charge 

from infinity to that point (i.e. rB = 0). 

 

 

.................................. (27) 

 

 

Or, in other words, 



 

..................................(28) 

Let us now consider a situation where the point charge Q is not located at the origin as shown in Fig. 10. 

 

Fig 10: Electrostatic Potential due a Displaced Charge The potential at a point P becomes 

 

 

.................................. (29) 

So far we have considered the potential due to point charges only. As any other type of charge distribution can 

be considered to be consisting of point charges, the same basic ideas now can be extended to other types of 

charge distribution also. Let us first consider N point charges Q1, Q2 ,. QN 

located at points with  position vectors     ,   , The potential at a point having position vector 

can be written as: 

 

 

 

.................................. (30a) 

OR 

 

 

...................................(30b) 

 

 

For continuous charge distribution, we replace point charges Qn by corresponding charge elements 

 

or or    ,            depending on whether the charge distribution is linear, surface or a volume charge 

distribution and the summation is  replaced by an integral. With these modifications we can write: 



 

 

For line charge, (31) 

 

 

For surface charge, (32) 

 

 

For volume charge, (33) 

 

 

It may be noted here that the primed coordinates represent the source coordinates and the unprimed coordinates 

represent field point. 

Further, in our discussion so far we have used the reference or zero potential at infinity. If any other point is 

chosen as reference, we can write: 

 

 

 

.................................(34) 

 

 

where C is a constant. In the same manner when potential is computed from a known electric field we can write: 

 ……………….. (35) 

The potential difference is however independent of the choice of reference. 

 

 

 

.......................(36) 

We have mentioned that electrostatic field is a conservative field; the work done in moving a charge from one 

point to the other is independent of the path. Let us consider moving a charge from point P1 to P2 in one path 

and then from point P2 back to P1 over a different path. If the work done on the two  paths were different, a net 

positive or negative amount of work would have been done when the body returns to its original position P1. In a 

conservative field there is no mechanism for dissipating energy corresponding to any positive work neither any 

source is present from which energy could be absorbed in the case of negative work. Hence the question of 

different works in two paths is untenable; the work  must have to be independent of path and depends on the 

initial and final positions. 

Second Maxwell’s Equation of Electrostatics: 

 

Since the potential difference is independent of the paths taken, VAB = - VBA , and over a closed path, 

 .................................(37) 

Applying Stokes's theorem, we can write: 

 

............................ (38) 

from which it follows that for electrostatic field, 

 

......................(39) 



Any vector field that satisfies is called an irrotational field. From our definition of potential, we can write 

 

 

.................................(40) 

 

 

from which we obtain, 

 

.......................................... (41) 

From the foregoing discussions we observe that the electric field strength at any point is the negative of the 

potential gradient at any point, negative sign shows that is directed from higher to lower values of 

. This gives us another method of computing the electric field , i. e. if we know the potential function, the electric 

field may be computed. We may note here that that one scalar function contain all the information that three 

components of carry, the same is possible because of the fact that three components of     are interrelated by the 

relation . 

Work done in moving a point charge in an electrostatic field: 

We have stated that the electric potential at a point in an electric field is the amount of work required to bring a 

unit positive charge from infinity (reference of zero potential) to that point. To determine the energy that is 

present in an assembly of charges, let us first determine the amount of work required to assemble them. Let us 

consider a number of discrete charges Q1, Q2,.     , QN are brought from infinity 

to their present position one by one. Since initially there is no field present, the amount of work done in bring Q1 

is zero. Q2 is brought in the presence of the field of Q1, the work done W1= Q2V21 where V21 is the potential 

at the location of Q2 due to Q1. Proceeding in this manner, we can write, the total 

work done (45) 

Had the charges been brought in the reverse order, 

 

................(46) 

Therefore, 

 

 

.... 

............(47) 

 

Here VIJ represent voltage at the Ith charge location due to Jth charge. Therefore, 

 

 

Or, (48) 

If instead of discrete charges, we now have a distribution of charges over a volume v then we can write, 

 

 

................(49) 



 

where is the volume charge density and V represents the potential function. 

 

 

Since, , we can write 

 

 

.......................................(50) 

 

Using the vector identity, 

 

, we can write 

 

 

 

      ................(51) 

 

 

 

 

In the expression , for point charges, since V  varies as and D varies as , the term V 

 
varies as while the area varies  as  r2.  Hence the integral  term varies  at least as and the as surface 

becomes large (i.e.       ) the integral term tends to zero. 

Thus the equation for W reduces to 

 

      

 ................(52) 

 

 

  is called the energy density in the electrostatic field. 

Maxwell’s first law: 

Statement:The following Electrostatic Field equations will be developed in this section: 

Integral form Differential forms 

 

 

 

                            
 
 

 
 

Maxwell’s first equation is based on Gauss’ law of electrostatics published in 1832, wherein Gauss established 

the relationship between static electric charges and their accompanying static fields. 

 

The above integral equation states that the electric flux through a closed surface area is equal to the total charge 

enclosed.



The differential form of the equation states that the divergence or outward flow of electric flux from a point is 

equal to the volume charge density at that point. 

 



Using vector identity we can write, (55) 

 

 

For a simple homogeneous medium, is constant and . Therefore, 

 

................(56) 

 

This  equation  is  known  as  Poisson’s  equation.  Here  we have introduced a new operator , ( del square), called the 

Laplacian operator. In Cartesian coordinates, 

 

...............(57) 

Therefore, in Cartesian coordinates, Poisson equation can be written as: 

 

 

...............(58) 

In cylindrical coordinates, 

 ...............(59) 

In spherical polar coordinate system, 

 ...............(60) 

At points in simple media, where no free charge is present, Poisson’s equation reduces to 

...................................(61) 

 

Which is known as Laplace’s equation. 

Laplace’s and Poisson’s equation are very useful for solving many practical electrostatic field problems where only 

the electrostatic conditions (potential and charge) at some boundaries are known and solution of electric field and 

potential is to be found hroughout the volume. We shall consider such applications in the section where we deal with 

boundary value problems. 

Properties of Materials and Steady Electric Current: 

Electric field can not only exist in free space and vacuum but also in any material medium. When an electric field is 

applied to the material, the material will modify the electric field either by strengthening it or weakening it, depending 

on what kind of material it is. 

Materials are classified into 3 groups based on conductivity / electrical property: 

 

 Conductors (Metals like Copper, Aluminum, etc.) have high conductivity (σ >> 1). 

 Insulators / Dielectric (Vacuum, Glass,  Rubber, etc.) have low conductivity (σ << 1). 

 Semiconductors (Silicon, Germanium, etc.) have intermediate conductivity. 

Conductivity (σ) is a measure of the ability of the material to conduct electricity. It is the reciprocal of resistivity (ρ). 

Units of conductivity are Siemens/meter and mho. 

 

The basic difference between a conductor and an insulator lies in the amount of free electrons available for conduction 

of current. Conductors have a large amount of free electrons where as insulators have only a few number ofelectrons 

for conduction of current. Most of the conductors obey ohm‘s law. Such conductors are also called ohmic conductors. 

Due to the movement of free charges, several types of electric current can be caused. 

The different types of electric current are: 

 Conduction Current. 



𝑆 

 Convection Current. 

 Displacement Current. 

Electric current: 

 

Electric current (I) defines the rate at which the net charge passes through a wire of cross sectional surface area S. 

Mathematically, 

 

If a net charge ΔQ moves across surface S in some small amount of time Δt, electric current(I) 

is defined as: 

 

 

How fast or how speed the charges will move depends on the nature of the material medium. 

 

Current density: 

 

Current density (J) is defined as current ΔI flowing through surface ΔS. 

 

Imagine surface area ΔS inside a conductor at right angles to the flow of current. As the area approaches zero, the 

current density at a point is defined as: 

 

The above equation is applicable only when current density (J) is normal to the surface. 

In case if current density(J) is not perpendicular to the surface, consider a small area ds of the conductor at an angle θ 

to the flow of current as shown: 

 

 

 

In this case current flowing through the area is given as: 

 

dI = J dS cosθ = J . dS and 𝐼 = ∫ 𝐽  .  𝑑  𝑠  

 

Where angle θ is the angle between the normal to the area and direction of the current. From the above equation it‘s 

clear that electric current is a scalar quantity. 

CONVECTION CURRENT DENSITY: 

Convection current occurs in insulators or dielectrics such as liquid, vacuum and rarified gas. Convection current 

results from motion of electrons or ions in an insulating medium. Since convection current doesn‘t involve 

conductors, hence it does not satisfy ohm‘s law. Consider a filament where there is a flow of charge ρv at a velocity u 

= uy ay. 



 

 

- Hence the current is given as: 

 

Where uy is the velocity of the moving electron or ion and ρv is the free volume charge density. 

 

- Hence the convection current density in general is given as: 

J = ρv u 

 

Conduction Current Density: 

Conduction current occurs in conductors where there are a large number of free electrons. Conduction current occurs 

due to the drift motion of electrons (charge carriers). Conduction current obeys ohm‘s law. 

When an external electric field is applied to a metallic conductor, conduction current occurs due to the drift of 

electrons. 

The charge inside the conductor experiences a force due to the electric field and hence should accelerate but due to 

continuous collision with atomic lattice, their velocity is  reduced.  The  net  effect is that the electrons moves or drifts 

with an average velocity called the drift 

velocity (υd) which is proportional to the applied electric field (E). 

 

Hence according to Newton‘s law, if an electron with a mass m is moving in an electric field E with anaverage drift 

velocity υd, the the average change in momentum of the free electron must be equal to the applied force (F = - e E). 



 

 

The drift velocity per unit applied electric field is called the mobility of electrons (μe). υd = - μe E 

where μe is defined as: 

Consider a conducting wire in which charges subjected to an electric field are moving with drift velocity υd. 

Say there are Ne free electrons per cubic meter of conductor, then the free volume charge density(ρv)within the wire 

is 

ρv= - e Ne 

The charge ΔQ is given as: 

ΔQ = ρv ΔV = - e Ne ΔS Δl = - e Ne ΔS υd Δt 

 

- The incremental current is thus given as: 

 

The conduction current density is thus defined as: 

 

where σ is the conductivity of the material. 

 

The above equation is known as the Ohm‘s law in point form and is valid at every point in space. 

In a semiconductor, current flow is due to the movement of both electrons and holes, hence conductivity is given as: 

σ = ( Ne μe + Nh μh )e 

DIELECTRC CONSTANT: 

It is also known as Relative permittivity. 



If two charges q 1 and q 2 are separated from each other by a small distance r. Then by using the coulombs law of 

forces the equation formed will be 

 

In the above equation    is the electrical permittivity or you can say it, Dielectric constant. 

If we repeat the above case with only one change i.e. only change  in  the  separation medium between the charges. 

Here some material medium must be used.  Then  the  equation formed will be. 

 

Now after division of above two equations 

 

 

In the above figure 

    is the Relative Permittivity. Again one thing to notice is that the dielectric constant is represented by the symbol 

(K) but permittivity by the symbol  

CONTINUITY EQUATION: 

The continuity equation is derived from two of Maxwell's equations. It states  that  the  divergence of the current 

density is equal to the negative rate of change of the charge density, 

 

Derivation 

One of Maxwell's equations, Ampère's law, states that 

 

Taking the divergence of both sides results in 

 

but the divergence of a curl is zero, so that 

 

Another one of Maxwell's equations, Gauss's law, states that 



Substitute this into equation (1) to obtain 

which is the continuity equation. 

 
 

 

 



Show 

 

 
 

Capacitance: 

 

The capacitance of a set of charged parallel plates is increased by the insertion of adielectric material. The capacitance 

is inversely proportional to the electric field between the plates, and the presence of the dielectric reduces the effective 

electric field. The dielectric is characterized by a dielectric constant k, and the capacitance is multiplied by that factor. 

Parallel Plate Capacitor 

 

 

The capacitance of flat, parallel metallic plates of area A and separation d is given by the expression above where: 

 

 

 

      = permittivity of space and 

 

k = relative permittivity of the dielectric material between the plates. k=1 for free space, k>1 for all media, 

approximately =1 for air. 

The Farad, F, is the SI unit for capacitance and from the definition of capacitance is seen to be equal to a 

Coulomb/Volt. 

 

 

 



Series and parallel Connection of capacitors 

Capacitors are connected in various manners in electrical circuits; series and parallel connections are the two basic 

ways of connecting capacitors. We compute the equivalent capacitance for such connections. 

Series Case: Series connection of two capacitors is shown in the figure 1. For this case we can write, 

 

 

 

 

.......................(1) 

 

 

 

 
 

Fig 1.: Series Connection of Capacitors 

 

 

 

Fig 2: Parallel Connection of Capacitors 

The same approach may be extended to more than two capacitors connected in series. Parallel Case: For the parallel 

case, the voltages across the capacitors are the same. 

The total charge 

 

Therefore, 

 

Capacitance of Parallel Plates: 

 

The electric field between two large parallel plates is given by 



 

 

The voltage difference between the two plates can be expressed in terms of the wor4k3done on a positive test charge q 

when it moves from the positive to the negative plate. 

 

 
 

It then follows from the definition of capacitance that 

 

Spherical Capacitor: 

 

The capacitance for spherical or cylindrical conductors can be obtained by evaluating the voltage difference between 

the conductors for a given charge on each. 

By applying Gauss' law to an charged conducting sphere, the electric field outside it is found to be 

 

 

 

The voltage between the spheres can be found by integrating the electric field along a radial line: 

 

From the definition of capacitance, the capacitance is 

 

Isolated Sphere Capacitor: 

An isolated charged conducting sphere has capacitance. Applications for such a capacitor may  not be immediately 

evident, but it does illustrate that a charged sphere has stored some  energy as a result of being charged. Taking the 

concentric sphere capacitance expression: 

 

 



 

 
 

and taking the limits gives 

 

Further confirmation of this comes from examining the potential of a charged conducting sphere: 

 

Cylindrical Capacitor: 

For a cylindrical geometry like a coaxial cable, the capacitance is usually stated  as  a  capacitance per unit length. The 

charge resides on the outer surface of the inner conductor and  the inner wall of the outer conductor. The capacitance 

expression is 

 

 

 

 

 

 

 

 

 

 

The capacitance for cylindrical orspherical conductors can be obtained by evaluating the voltage difference between 

the conductors for a given charge on each. By applying Gauss' law to an infinite cylinder in a vacuum, the electric 

field outside a charged cylinder is found to be 

 

The voltage between the cylinders can be found by integrating the electric field along a radial line: 



 

From the definition of capacitance and including the case where the volume  is  filled  by a dielectric of dielectric 

constant k, the capacitance per unit length is defined above. 

  



UNIT-II 

MAGNETOSTATICS 

 Biot - Savart's Law 

 Ampere's Circuital Law and Applications 

 Magnetic Flux Density 

 Maxwell’s Equations for Magnetostatic Fields 

 Magnetic Scalar and Vector Potentials 

 Forces due to Magnetic Fields 

 Ampere's Force Law 

 Inductance and Magnetic Energy 

 Illustrative Problems 

  



Introduction: 

In previous chapters we have seen that an electrostatic field is produced by static or  stationary charges.  The 

relationship of the steady magnetic field to its sources is much more complicated. 

The source of steady magnetic field may be a permanent magnet, a direct current or an electric field changing with 

time. In this chapter we shall mainly consider the magnetic field produced by  a direct current. The magnetic field 

produced due to time varying electric field will be discussed later. 

There are two major laws governing the magneto static fields are: 

 Biot-Savart Law 

 Ampere's Law 

Usually, the magnetic field  intensity is  represented by the vector  . It is customary to represent the direction of the 

magnetic field intensity (or current) by a small circle with a dot or cross sign depending on whether the field (or 

current) is out of or into the page as shown in Fig. 2.1. 

 

 

 

 

 

H(or l ) out of the page                        H(or l ) into the page  

Fig. Representation of magnetic field (or current) 

Biot- Savart’s Law: 

 

This law relates the magnetic field intensity dH produced at a point due to a differential current element   as shown in 

Fig. 

 

The magnetic field intensity at P                   can be written as, 

 

 

 

 

(a)                                         (b) 

 

 

(or l ) out of the page 



 

where      is the distance of the current element from the point P. 

The value of the constant of proportionality 'K' depends upon a property called permeability of  the medium around the 

conductor. Permeability is represented by symbol 'm' and the constant 'K' is expressed in terms of 'm' as 

Magnetic field 'B' is a vector and unless we give the direction of 'dB', its description is not complete. Its direction is found 

to be perpendicular to the plane of 'r' and 'dl'. 

If we assign the direction of the current 'I' to the length element 'dl', the vector product dl x r has magnitude r dl sinq and 

direction perpendicular to 'r' and 'dl'. 

Hence, Biot–Savart law can be stated in vector form to give both the magnitude as well as direction of magnetic field due 

to a current element as 

 

Similar to different charge distributions, we can have different current distribution such as  line current, surface current 

and volume current. These different types of current densities are shown in Fig. 2.3. 

 

 

 

                     Line Current                      Surface Current Volume Current 

Fig. 2.3: Different types of current distributions 



By denoting the surface current density as K (in amp/m) and volume current density as J (in amp/m2) we can write: 

( It may be noted that   ) 

Employing Biot -Savart Law, we can now express the magnetic field intensity H. In terms of these current distributions as 

         ............................. for line current............................ 

          ........................ for surface current .................... 

         ....................... for volume current...................... 

𝑯  Due to infinitely long straight conductor: 

We consider a finite length of a conductor carrying a current  placed along z-axis as shown in the Fig 2.4. We determine 

the magnetic field at point P due to this current carrying conductor. 

 

Fig. 2.4: Field at a point P due to a finite length current carrying conductor With reference to Fig. 2.4, we find that 

Applying Biot - Savart's law for the current element   We can write, 

 

 

Substituting                                                 we can write, 

 

We find that, for an infinitely long conductor carrying a current  I , and                   Therefore 



 

Ampere's Circuital Law: 

Ampere's circuital law states that the line integral of the magnetic field   (circulation of H ) around a closed path is the 

net current enclosed by this path. Mathematically, 

 

The total current I enc can be written as, 

By applying Stoke's theorem, we can write 

Which is the Ampere's circuital law in the point form and Maxwell’s equation for magneto static fields. 

Applications of Ampere's circuital law: 

 

1. It is used to find 𝐻  and 𝐵  due to any type of current distribution. 

2. If 𝐻   or 𝐵  is known then it is also used to find current enclosed by any closed path. 

We illustrate the application of Ampere's Law with some examples. 

𝑯  Due to infinitely long straight conductor :( using Ampere's circuital law) 

We compute magnetic field due to an infinitely long thin current carrying conductor as shown in Fig. 2.5. Using Ampere's 

Law, we consider the close path to be a  circle  of radius  as shown in the Fig. 4.5. 

If we consider a small current element   ,  is perpendicular to the plane containing both  and  

 . Therefore only component of   H  that will be present is,        i.e.,       

By applying Ampere's law we can write,  

 



Fig. Magnetic field due to an infinite thin current carrying conductor 

𝑯  Due to infinitely long coaxial conductor :( using Ampere's circuital law) 

We consider the cross section of an infinitely long coaxial conductor, the inner conductor carrying a current I and outer 

conductor carrying current - I as shown in figure 2.6. We compute the magnetic field as a function of  as follows: 

In the region  

 

In the region  

 

Fig. 2.6: Coaxial conductor carrying equal and opposite currents in the region 

 



In the region     

 

Magnetic Flux Density: 

In  simple  matter,  the  magnetic flux density related  to  the  magnetic field intensity as 

where called the permeability. In particular when we consider the free space 

where H/m is the permeability of the free space. Magnetic flux density is 

measured in terms of Wb/m 2 . 

The magnetic flux density through a surface is given by: 

                                                        

                                Wb 

In the case of electrostatic field, we have seen that if the surface is a closed surface, the net flux passing 

through the surface is equal to the charge enclosed by the surface. In case of magnetic field isolated 

magnetic charge (i. e. pole) does not exist. Magnetic poles always occur in pair (as N-S). For example, if we 

desire to have an isolated magnetic pole by dividing the magnetic bar successively into two, we end up 

with pieces each having north (N) and south (S) pole as shown  in Fig. 6 (a). This process could  be  

continued until the  magnets are of atomic dimensions; still  we will have N-S pair occurring together. This 

means that the magnetic poles cannot be isolated. 

 

 

Fig. 6: (a) Subdivision of a magnet (b) Magnetic field/ flux lines of a straight current carrying conductor 

Maxwell’s 2nd equation for static magnetic fields: 



Similarly if we consider the field/flux lines of a current carrying conductor as shown  in  Fig.  6 (b), we find  that these lines 

are closed lines, that is,  if we consider a closed surface, the number  of flux lines that would leave the surface would be 

same as the number of flux lines that would enter the surface. 

From our discussions above, it is evident that for magnetic field,  

......................................in integral form 

which is the Gauss's law for the magnetic field. By applying divergence theorem, we can write: 

 

Hence,                                                   in point/differential form  which is the Gauss's law for the magnetic field in point form. 

Magnetic Scalar and Vector Potentials: 

In studying electric field problems, we introduced the concept of electric potential that simplified the computation of 

electric fields for certain types of problems. In the same manner let us relate the magnetic field intensity to a scalar 

magnetic potential and write: 

From Ampere's law , we know that 

Therefore, 

But using vector identity,                               , we find that                      is valid only where . 

Thus the scalar  magnetic potential is defined only  in the  region where . Moreover, Vm in general is not a single valued 

function of position. This point can be illustrated as follows. Let us consider the cross section of a coaxial line as shown in 

fig 7. 

In the regi,                                                    and 

 

 

 

 

 

 

Fig. 7: Cross Section of a Coaxial Line 

 If Vm is the magnetic potential then, 



 

If we set  Vm = 0 at                                         then c=0 and 

 

We observe that as we make a complete lap around the current carrying conductor , we reach again but Vm this time 

becomes 

We observe that value of Vm keeps changing as we complete additional laps to pass through the same point. We 

introduced Vm analogous to electostatic potential V. 

But for static electric fields, 

           and  

 

whereas for steady magnetic field                              wherever        but             even if                along the 

path of integration. 

We now introduce the vector magnetic potential which can be used in regions where current density may be zero or 

nonzero and the same can be easily extended  to time  varying cases. The use of vector magnetic potential provides 

elegant ways of solving EM field problems. 

 

Since                       and we have the  vector identity that  for any vector     ,                      , we can write . 

 

 

Here, the  vector field              is  called  the  vector  magnetic  potential.  Its SI unit  is  Wb/m.  

 

 

 
By using vector identity, 
 

 

Great deal of simplification can be achieved if we choose . 

 
Putting , we get which is vector poisson equation. 

In Cartesian coordinates, the above equation can be written in terms of the components as 

 
. 
 



 

The form of all the above equation is same as that of 
 

for which the solution is 
 

 

In case of time varying fields we shall see that , which is known as Lorentz condition,  V being  

the electric potential. Here we are dealing with static magnetic field, so . 

By comparison, we can write the solution for Ax as 
 

Computing similar solutions for other two components of the vector potential, the  vector  

potential can be written as 

 

 

This equation enables us to find the vector potential at a given point because of a volume current 

density . 

Similarly for line or surface current density we can write 

 

 
 

 

. 

The magnetic flux through a given area S is given by 

 

Substituting 
 

Vector potential thus have the physical significance that its integral around any closed path is equal to the magnetic flux 

passing through that path. 

 

 

 



Forces due to magnetic fields 
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Magnetic energy or Energy stored in Magnetic Field: 

So far we have discussed the inductance in static forms. In earlier  chapter  we 

discussed the fact that work is required to be expended to assemble a group of charges and 

this work is  stated as electric energy. In the same manner energy needs to be expended in 

sending currents through coils and it is stored as magnetic energy. Let us consider a scenario 

where we consider a coil in which the current is increased from 0 to a value I. As mentioned 

earlier,  the  self inductance of a coil in general can be written as 

 
 

 

or 

If we consider a time varying scenario, 

 

 

 
 

We will later see that is an induced voltage. 
 



 

 

is the voltage drop that appears across the coil and thus voltage opposes the 

change of current. 

Therefore in order to maintain the increase of current, the electric source must do an 

work against this induced voltage. 

 
. 

 

(Joule) 

which is the energy stored in the magnetic 

circuit. 

We can also express the energy stored in the coil in term of field quantities. 

For linear magnetic circuit 
 

Now,  

where A is the area of cross section of the coil. If l is the length of the coil 
 

 

Al is the volume of the coil. Therefore the magnetic energy density i.e., magnetic 

energy/unit volume is given by 

 

In vector form 

 

J/mt3 

 
is the energy density in the magnetic field. 

  



 

Module III 

TIME VARYING FIELDS 

In our study of static fields so far, we have observed that static electric fields are produced by electric charges, static 

magnetic fields are produced by charges in motion or by steady current. Further, static electric field is a conservative 

field and has no curl, the static magnetic field is continuous and its divergence is zero. The fundamental 

relationships for static electric fields among the field quantities can be summarized as: 

(1) 

(2) 

For a linear and isotropic medium, 

(3) 

Similarly for the magnetostatic case 

(4) 

(5) 

(6) 

It can be seen that for static case, the electric field vectors           and and magnetic field vectors and

 form separate pairs. 

In this chapter we will consider the time varying scenario. In the time varying case we  will observe that a changing 

magnetic field will produce a changing electric field and vice versa. 

We begin our discussion with Faraday's Law of electromagnetic induction and  then present the Maxwell's equations 

which form the foundation for the electromagnetic theory. 

Maxwell's equations represent one of the most elegant and concise ways to state  the  fundamentals of electricity 

and magnetism. From them one can develop most of the working relationships in the field. Because of their concise 

statement, they embody a high level of mathematical sophistication and are therefore not generally introduced in 

an  introductory treatment of the subject, except perhaps as summary relationships. 

Faraday's Law of electromagnetic Induction: 

Michael Faraday, in 1831 discovered experimentally that a current was induced in a 

conducting loop when the magnetic flux linking the loop changed. In terms of fields, we can say that 

a time varying magnetic field produces an electromotive force (emf) which causes a current in a 

closed circuit. The quantitative relation between the induced emf (the voltage that arises from 

conductors moving in a magnetic field or from changing magnetic fields) and the rate of change of 

flux linkage developed based on experimental observation is known as Faraday's law. 

Mathematically, the induced emf can be written as 



 

Emf =  Volts (7) 

       Where   is the flux linkage over the 

closed path. 

 
A non zero may result due to any of the following: 

(a) time changing flux linkage a stationary closed path. 

(b) relative motion between a steady flux a closed path. 

(c) a combination of the above two cases. 

The negative sign in equation (7) was introduced by Lenz in order to comply with the 

polarity of the induced emf. The negative sign implies that the induced emf will cause a current flow 

in the closed loop in such a direction so as to oppose the change in the linking magnetic flux which 

produces it. (It may be noted that as far as the induced emf is concerned, the closed path forming a 

loop does not necessarily have to be conductive). 

If the closed path is in the form of N tightly wound turns of a coil, the change in the magnetic 

flux linking the coil induces an emf in each turn of the coil and total emf is the sum of the induced 

emfs of the individual turns, i.e., 

 
Emf = Volts (8) 

By defining the total flux linkage as 

(9) 

The emf can be written as 

 

Emf = (10) 

Continuing with equation (3), over a closed contour 'C' we can write 

Emf =                           (11) 

where    is the induced electric field on the conductor to sustain the current. 

Further, total flux enclosed by the contour 'C ' is given by 

 

(12) 

Where S is the surface for which 'C' is the contour. 



 

From (11) and using (12) in (3) we can write 
 
 

 (13) 

By applying stokes theorem 
 

         (14) 

 

 

Therefore, we can write 

 

   (15) 

which is the Faraday's law in the point form 

 

 

We have said that non zero can be produced in a several ways. One particular case is when a time varying flux 

linking a stationary closed path induces an emf. The emf induced in a stationary closed path by a time varying 

magnetic field is called a transformer emf . 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Inconsistency of amperes law 
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Boundary Condition for Magnetic Fields: 

Similar to the boundary conditions in the electro static fields, here we will consider the behavior 

of and at the interface  of  two  different  media. In  particular,  we  determine  how  the  

tangential and normal components of magnetic fields behave at the boundary of two regions 

having different permeabilities. 

 

The figure 4.9 shows the interface between two media  having permeabities     and      ,      being 

the normal vector from medium 2 to medium 1. 
 

 

 



 

 

 

o determine the condition for the normal component of the flux  density vector , we consider a 

small pill box P with vanishingly small thickness  h and having an elementary area for the 

faces. Over the pill box, we can write 

 

  ....................................................(4.36) 

Since h --> 0, we can neglect the flux through the sidewall of the pill box. 

 
 

 ...........................(4.37) 

and   ..................(4.38) 

 

where 
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Since is small, we can write 

 

 

or, ................................................................................... (4.40) 

 

 
That is, the normal component of the magnetic flux density vector is continuous across the 

interface. 

 

In vector form, 

 
...........................(4.41) 

 

To determine the condition for the tangential component for the magnetic field, we consider a 

closed path C as shown in figure 4.8. By applying Ampere's law we can write 
 

 

Since h -->0 , 
 

We have shown in figure 4.8, a set of  three unit vectors , and such that they 
 

satisfy (R.H. rule). Here is tangential to the interface and is the vector 

perpendicular to the surface enclosed by C at the interface. 
 
 

 

if Js = 0, the tangential magnetic field is also continuous. If one of the medium is a perfect 

conductor Js exists on the surface of the perfect conductor. 
 

In vector form we can write, 

 

 
Therefore, 

 

 

  



 

UNIT – IV 
 

EM Wave Characteristics - I: 

 
 Wave Equations for Conducting and Perfect Dielectric Media 

 Uniform Plane Waves - Definition, Relation between E & H 

 Wave Propagation in Lossless and Conducting Media 

 Wave Propagation in Good Conductors and Good Dielectrics 

 Illustrative Problems. 

  



 

from 1 

Wave equations: 

The Maxwell's equations in the differential form are 

Let   us   consider   a   source   free   uniform   medium  having dielectric  constant , magnetic 

permeability and conductivity . The above set of equations can be written as 

 

Using the vector identity , 

We can write from 2 

 

 
 

Substituting 
 

 

 

But in source free( 

In the same manner for equation eqn 1 

 

Since from eqn 4, we can write 

 
 

 

 

) medium (eq3) 



 

These two equations 
 

 
are known as wave equations. 

 
Uniform plane waves: 

A uniform plane wave is a particular solution of Maxwell's equation assuming electric 

field (and magnetic field) has same magnitude and phase in infinite planes perpendicular to the 

direction of propagation. It may be noted that in the strict  sense a uniform plane wave doesn't  

exist in practice as creation of such waves are possible with sources of infinite extent.  However,  

at large distances from the source, the wave front or the surface of the constant phase becomes 

almost spherical and a small portion of this large sphere can be considered to plane. The 

characteristics of plane waves are simple and useful for studying many practical scenarios. 

Let us consider a plane wave which has only Ex component and propagating along z . 

Since the plane wave will have no variation along the plane perpendicular to z 

 
 

i.e., xy plane, . The Helmholtz's equation reduces to, 
 

The solution to this equation can be written as 
 

 

are the amplitude constants (can be determined from boundary conditions). 
 

In the time domain, 
 

 
assuming are real constants. 

 

Here, represents the forward traveling wave. The plot of 

for several values of t is shown in the Figure below 
 
 

 

 

 

 

 

 



 

 
 

 

Figure : Plane wave traveling in the + z direction 

As can be seen from the figure, at successive times, the wave travels in the +z direction. 

If we fix our attention on a particular point or phase on the wave (as shown by the dot) i.e. , 

= constant 

Then we see that as t is increased to , z also should increase to so that 
 

Or, 

 

Or, 

When , 

 

we write = phase velocity . 
 

 

If the medium in which the wave is propagating is free space i.e., 

 
 

Then 

Where 'C' is the speed of light. That is plane EM wave travels in free space with the speed of 

light. 

The wavelength is defined as the distance between two successive maxima (or minima  or 

any other reference points). 

i.e.,  

or, 

 

or, 



 

 

Substituting , 

or, 

Thus  wavelength also represents the distance covered in one oscillation of the wave. 

Similarly,  represents a plane wave traveling in the -z direction. 

The associated magnetic field can be found as follows: 

From (6.4), 
 

 

 
 

 
 

= 

 
 

= 

 

 
where is the intrinsic impedance of the medium. 

When the wave travels in free space 

 

is the intrinsic impedance of the free space. 

In the time domain, 
 

Which represents the magnetic field of the wave traveling in the +z direction. 

For the negative traveling wave, 

 

For the plane waves described, both the E & H fields are perpendicular to the direction of 

propagation, and these waves are called TEM (transverse electromagnetic) waves. 

The E & H field components of a TEM wave is shown in Fig below  



 

 

 

 

 

 

 

 

 

 

Figure : E & H fields of a particular plane wave at time t. 

Poynting Vector and Power Flow in Electromagnetic Fields: 

Electromagnetic waves can transport energy from one point to another point. The electric and 

magnetic field intensities asscociated with a travelling electromagnetic wave can be related to the 

rate of such energy transfer. 

Let us consider Maxwell's Curl Equations: 

Using vector identity 
 

the above curl equations we can write 
 

 

.............................................(1) 

In simple medium where and are constant, we can write 
 

     and 

 

Applying Divergence theorem we can write,  
 

 

 

 

...........................(2) 



 

 

 

The term represents the rate of change of energy stored in the electric 

 
and  magnetic  fields and the term represents the power dissipation within the volume. 

Hence right hand side of the equation (6.36) represents the total decrease in power within the 

volume under consideration. 

 

The  left  hand side of equation (6.36) can be  written as where 

(W/mt2) is called the Poynting vector and it represents the power density vector associated with  

the electromagnetic field. The  integration of the Poynting vector over any closed surface gives  

the net power flowing  out of the surface. Equation (6.36) is  referred to as Poynting theorem and  

it states that the net power flowing out of a given volume is equal to the time rate of decrease  in 

the energy stored within the volume minus the conduction losses. 

Poynting vector for the time harmonic case: 

For time harmonic case, the time variation is of the  form  ,  and  we  have  seen  that  

instantaneous value of a quantity is the real part of the product of a phasor quantity and when 

is used as reference. For example, if we consider the phasor 
 

then we can write the instanteneous field as 

 .................................(1) 

when E0 is real. 

Let us consider two instanteneous quantities A and B such that 

 
..................(2) 

 

where A and B are the phasor quantities. 

i.e, 

 
Therefore, 

 

 
 

..............................(3) 
 

 

Since A  and B are periodic with period , the time average value of the product form AB, 

denoted by can be written as 

 



 

.....................................(4) 

Further, considering the phasor quantities A and B, we find that 
 

 
and , where * denotes complex conjugate. 

 

 

..............................................(5) 

The poynting vector can be expressed as 

 
...................................(6) 

 

If we consider a plane electromagnetic wave propagating in +z direction and has only 

component, from (6.42) we can write: 
 

Using (6) 
 

 

........................................(7) 

 
where and , for the plane wave under consideration. 

For a general case, we can write 

 
.....................(8) 

We can define a complex Poynting vector 
 

 
and time average of the instantaneous Poynting vector is given by .  

 

Polarization of plane wave: 

The polarization of a plane wave can be defined as the orientation of the electric field 

vector as a function of time at a fixed point in space. For an electromagnetic wave, the 

specification of the orientation of the electric field is sufficient as the magnetic field components 

are related to electric field vector by the Maxwell's equations. 

Let us consider a plane wave travelling in the +z direction. The wave has both Ex and Ey 

components. 
 

The corresponding magnetic fields are given by, 
 



 

 

Depending upon the values of Eox and Eoy we can have several possibilities: 

1. If Eoy  = 0, then the wave is  linearly polarised in the x-direction. 

2. If Eoy  = 0, then the wave is  linearly polarised in the y-direction. 

3. If Eox and Eoy are both real (or complex with equal phase), once again we get a linearly 

 

polarised wave with the axis of polarisation inclined at  an angle , with respect to the x- 

axis. This is shown in fig1 below 
 

Fig1 : Linear Polarisation 

4. If Eox  and  Eoy  are  complex with different phase angles, will not point to a single spatial 

direction. This is explained as follows: 

 

Let 
 

Then, 

 

 

and   ....................................(2) 

 
To keep the things simple, let us consider a =0 and . Further, let us study the nature of the 

electric field on the z =0 plain. 

From equation (2) we find that, 
 

 

 .....................................(3) 

and the electric field vector at z = 0 can be written as 

 
.............................................(4) 

 



 

 
Assuming , the plot of for various values of t is hown in figure 2 

 

 

Figure 2 : Plot of E(o,t) 

From equation (6.47) and figure (6.5) we observe that the tip of the arrow representing electric 

field vector traces qn ellipse and the field is said to be elliptically polarised. 
 
 

 
 
 

Figure 3: Polarisation ellipse 

The polarisation ellipse shown in figure 3 is defined by its axial ratio(M/N, the  ratio  of  

semimajor to semiminor axis), tilt angle (orientation with respect to xaxis) and sense of 

rotation(i.e., CW or CCW). Linear polarisation can be treated as a special case of elliptical 

polarisation, for which the axial ratio is infinite. 

 
In  our example, if , from equation the tip of the arrow representing electric field 

vector traces out a circle. Such a case is referred to as Circular Polarisation. For circular 

polarisation the axial ratio is unity 
 
 



 

Figure 5: Circular Polarisation (RHCP) 

Further, the circular polarisation is aside to be right handed circular polarisation (RHCP) if the 

electric field vector rotates in the direction of the fingers of the right hand when the thumb points 

in the direction of propagation-(same and CCW). If the electric field vector rotates  in  the  

opposite direction, the polarisation is asid to be left hand circular polarisation (LHCP) (same as 

CW).In AM radio broadcast, the radiated electromagnetic wave  is  linearly polarised  with the 

field vertical to the ground( vertical polarisation) where as TV signals are horizontally polarised 

waves. FM broadcast is usually carried out using circularly polarised waves.In radio 

communication, different information signals can be transmitted at the same frequency at 

orthogonal polarisation ( one signal as vertically polarised other horizontally polarised or one as 

RHCP while the other as LHCP) to increase capacity. Otherwise, same signal can be transmitted 

                   at orthogonal polarisation to obtain diversity gain to improve reliability of transmission. 

  



 

EM Wave Characteristics - II: 

 

 Reflection and Refraction of Plane Waves - Normal for both perfect Conductor and 

Perfect dielectric 

 
 

 Brewster Angle 

 Critical Angle 

 Total Internal Reflection 

 Surface Impedance 

 Poynting Vector 

 Poynting Theorem 

 Illustrative Problems. 

 
  



 

We have considered the propagation of uniform plane waves in an unbounded 

homogeneous medium. In practice, the wave will propagate in bounded regions where several 

values of will be present. When plane wave travelling in one medium meets a different 

medium, it is partly reflected and partly transmitted. In this section, we consider wave reflection 

and transmission at planar boundary between two media. 

Fig 6 : Normal Incidence at a plane boundary 

Case1: Let z = 0 plane represent the interface between two media. Medium 1 is characterised by 

and  medium 2  is characterized  by .Let  the subscripts 'i' denotes  incident, 
'r'   denotes    reflected    and    't'    denotes    transmitted    field    components    respectively.   

The incident wave is assumed to be a plane wave polarized along x and travelling in medium 1 

 

along direction. From equation (6.24) we can write 

 
..................(1) 

 
 

......................(2) 

where and   . 

Because of the presence of the second medium at z =0, the incident wave will undergo partial 

 

reflection and partial transmission.The reflected wave will travel along in medium 1. 

The reflected field components are: 

 

...............................................(3) 
 

 

.........(4)  
 

The transmitted wave will travel in medium 2 along for which the field components are 

 

 



 

 

 

 
 

...........................................(5) 

 
 

............................................(6) 
 

 

where and 
 

 

In medium 1, 

and 

and in medium 2, 

and 

Applying boundary conditions at the interface z = 0, i.e., continuity of tangential  field 

components and noting that incident, reflected and transmitted field components are tangential at 

the boundary, we can write 

 
& 

From equation 3to 6 we get, 
 

................................................................(7) 

 
 

..............................................................(8) 

Eliminating Eto , 

 

or,  

or, 

 
 

...............(8) 

is called the reflection coefficient. 

From equation (8), we can write 



 

 

 

 

 

or, 
 
 

........................................(9) 

is called the transmission coefficient. 

We observe that, 

 

........................................(10) 

The following may be noted 

(i) both and T are dimensionless and may be complex 

 

(ii) 

Let us now consider specific cases: 

Case I: Normal incidence on a plane conducting boundary 

 

The medium 1 is perfect dielectric and medium 2 is perfectly conducting . 
 

 

 

From (9) and (10) 

= -1 

and T =0 

Hence the wave is not transmitted to medium 2, it gets reflected entirely from the interface to the 

medium 1. 
 

&   .................................(11) 

Proceeding in the same manner for the magnetic field in region 1, we can show that, 

 
 

...................................................................................(12) 

The wave in medium 1 thus becomes a standing wave due to the super position of a forward 

travelling  wave  and  a  backward  travelling  wave.  For  a  given  '  t',  both and vary 

sinusoidally with distance measured from z = 0. This is shown in  figure 6.9.  



 

 

 

 

 

Figure 7: Generation of standing wave 

Zeroes of E1(z,t) and Maxima of H1(z,t). 

Maxima of E1(z,t) and zeroes of H1(z,t). 

Case2: Normal incidence on a plane dielectric boundary : If the medium 2 is not a perfect 

conductor  (i.e. ) partial reflection will result. There will be a reflected wave in the 

medium 1 and a transmitted wave in the medium 2.Because of the reflected wave, standing wave 

is formed in medium 1. 

From equation (10) and equation (13) we can write 

 
..................(14) 

Let us consider the scenario when both the media are dissipation less i.e. perfect dielectrics ( 

) 
 

 

 

 

 



 

 
In this case both and become real numbers. 

.................(15) 
 

 

 

 

 

 
 

..................(16) 

From (6.61), we can see that, in medium 1 we have a traveling wave component with amplitude 

TEio and a standing wave component with amplitude 2JEio. The location of the maximum and the 

minimum of the electric and magnetic field  components  in the medium 1from the interface can  

be found as follows. The electric field in medium 1 can be written as 
 

..................(17) 

If i.e. >0 

The maximum value of the electric field is 

 
..................(18) 

and this occurs when 
 

 

 
or ,   n = 0, 1, 2, 3. ...................... (19) 

 
The minimum value of is 

 
.................(20) 

And this occurs when 
 

 

or ,  n = 0, 1, 2, 3 ............................. (21) 

For i.e. <0 

 
The  maximum value of is which occurs at the zmin locations and the minimum 

 

value of is which occurs at zmax locations as given by the equations (6.64) and 

(6.66). 

 

 
From our discussions so far we observe that can be written as 

 
.................(22)  



 

 

 

 

 

The quantity S is called as the standing wave ratio. 

As the range of S is given by 

From (6.62), we can write the expression for the magnetic field in medium 1 as 

 
 

.................(23) 

From (6.68)  we  find  that   will be  maximum at  locations  where  is minimum and vice 
versa. 

In medium 2, the transmitted wave propagates in the + z direction. 

Oblique Incidence of EM wave at an interface: So far we have discuss the case of normal 

incidence where electromagnetic wave traveling in a lossless medium impinges normally at the 

interface of a second medium. In this section we shall consider the case of oblique incidence. As 

before, we consider two cases 

i. When the second medium is a perfect conductor. 

ii.When the second medium is a perfect dielectric. 

A plane incidence is defined as the plane containing the vector indicating the direction of 

propagation of the  incident  wave and  normal to the  interface. We study two specific cases when 

the   incident   electric   field         is   perpendicular   to   the   plane   of   incidence  (perpendicular 

polarization) and  is  parallel to the  plane  of incidence  (parallel polarization).  For a general  

case, the incident wave may have arbitrary polarization but the same can be expressed as a linear 

combination of these two individual cases. 
 

 

Critical angle: 
 

In geometric optics, at a refractive boundary, the smallest angle of incidence at  which total 

internal reflection occurs. The critical angle is given by 
 
 

 

Where Өc is the critical angle, n 1 is the refractive index of the less dense medium, and n 2 is the 

refractive index of the denser medium. 

 

Angle of incidence: The angle between an incident ray and the normal to a reflecting or  

refracting surface 
 

 

 



 

 

 

 

 

Brewster's angle 

Brewster's angle (also known as the polarization angle) is an angle of incidence at which light with a 

particular polarization is perfectly transmitted through a transparent dielectric surface, with no reflection. 

When unpolarized light is incident at this angle, the light that is reflected from the surface is therefore perfectly 

polarized. 

When light encounters a boundary between two media with different refractive indices, some of it is usually 

reflected as shown in the figure above. The fraction that is reflected is described by the Fresnel equations, and 

is dependent upon the incoming light's polarization and angle of incidence. 

The Fresnel equations predict that light with the p polarization (electric field polarized in the same plane as 

the incident ray and the surface normal at the point of incidence) will not be reflected if the angle of incidence 

is 

𝜃     
  
  
  

 

 

where n1 is the refractive index of the initial medium through which the light propagates (the "incident 

medium"), and n2 is the index of the other medium. This equation is known as Brewster's law, and the angle 

defined by it is Brewster's angle. 
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An illustration of the polarization of light that is incident on an interface at Brewster's angle. 

 

Total Internal Reflection  

When a ray of light AO passes from an optically denser medium to a rarer medium, at the interface XY, it is partly 

reflected back into the same medium along OB and partly refracted into the rarer medium along OC as shown in figure. 

If the angle of incidence is gradually increased, the angle of refraction r will also gradually increase and at a 

certain stage r becomes 90o. Now the refracted ray OC is bent so much away from the normal and it grazes the surface of 

separation of two media. The angle of incidence in the denser medium at which the refracted ray just grazes the surface 

of separation is called the critical angle c of the denser medium. 

If i is increased further, refraction is not possible and the incident ray is totally reflected into the same medium 

itself. This is called total internal reflection. 

  

If µd is the refractive index of the denser medium then, from Snell’s Law, the refractive index of air with respect to 

the denser medium is given by, 

µa/ µd = sin i /sin r 

1/ µd = sin i/sin r       (Since, µa = 1 for air) 

If r = 90o, i = c 

sin c/sin 90o = 1/µd  

Or, sin c = 1/µd 

https://files.askiitians.com/cdn1/images/2015311-126318-6875-untitled-7.png


 

Or, c = sin-1(1/µd) 

If the denser medium is glass, c = sin-1(1/µg) 

Hence for total internal reflection to take place (i) light must travel from a denser medium to a rarer medium and 

(ii) the angle of incidence inside the denser medium must be greater than the critical angle i.e. i > c. 
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